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TORSIONAL OSCILLATION ANALYSIS OF SUSPENSION
BRIDGES BY A DISPLACEMENT METHOD

By Yiichira Havasar* and Masanobu MurATA**

1. INTRODUCTION

Since the disaster of the Tacoma Narrow's
Bridge in 1940, the dynamic analysis of suspension
bridges has become of great importance and a
lot of investigations have been made. Most of
the analytical solutions concerned have relied
upon the Rayleigh-Ritz!»% method—the energy
method—or the differential equation method on
the basis of both Melan's equation and the cable
equation. However, it is difficult to apply those
methods to suspension bridges with arbitrary
structural configurations, both in completed and
during erection stages.

The oscillation analysis for a suspension bridge
can be formulated by a displacement method
considering the structure as a set of discrete
members. The method presented by Tezcan® is
applicable to the dynamic problem, and Shiraki®™
has done oscillation analysis utilizing this method.
The shortcoming of this method is the difficulty
in the treatment of a stiffening truss with tor-
sional rigidity.

Komatsu and Nishimura®:'% analyzed the oscil-
lation of a completed suspension bridge by Galer-
kin's method considering the cross sectional dis-
tortion of truss. They showed that the torsional
frequencies of a long span, truss-stiffened suspen-
sion bridge were not affected by the sectional
distortion of truss if the cross sectional distortion
rigidity was larger than 10° (ton m/m). However,
other effects such as the influence of a center-
stay and the inclination of hangers were not
dealt with in their work.

In this paper, a stiffness equation for a stiffen-
ing truss is derived from the basic torsional equa-
tions by Vlasov®, by making use of the fact that
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an ordinary cross section of a long span suspen-
sion bridge is regarded as rigid, while cables and
hangers are presumed as a set of bars subjected
to axial forces'. Then, a procedure of torsional
oscillation analysis in suspension bridges by a
displacement method is presented utilizing the
above-mentioned stiffness equations. According
to the present method, the torsional analyses of
suspension bridges with arbitrary configurations
are easily made. For example, we can analyze
suspension bridges with two-hinged or continu-
ous type of stiffening truss, center-stay, center-
tie, tower-stays, diagonal hangers, etc., either in
the completed or erection stages.

2. STIFFNESS EQUATION FOR
STIFFENING TRUSS

If a stiffening truss of a suspension bridge is
replaced by a rectangular box girder, the follow-
ing assumptions can be made;

The cross section of the stiffen-
ing truss is biaxially symmet-
ric.

The cross section of the stiffen-
ing truss is rigid.

Assumption 1 means that torsional equations
of the stiffening truss can be separated from
bending equations of the stiffening truss. As-
sumption 2 is introduced to simplify the problem.
Komatsu and Nishimura referred to effects of
sectional distortion rigidity of the truss on tor-
sional frequencies of a long span, truss-stiffened
suspension bridge. They showed that period
errors in the first symmetric and asymmetric
modes were less than 1%, but those in higher
modes became larger than 1% in the case that
sectional rigidity was about 10° and 10° (ton
m/m).

In this paper, we presumed that the cross sec-
tion is rigid, because influential modes in wind
resistant design are the first symmetric and asym-
metric modes, and ordinary sectional distortion

Assumption 1:

Assumption 2:
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rigidity is larger than 10° (ton m/m). So if the
effects of cross sectional distortion are not neglect-
ed, the stiffness equation presented in references
10) and 13) should be used.

In the first place, the plane lattice system is
replaced by an equivalent thin plate to cause the
same shear deformations. The equivalent plate
thickness for two typical frames is seen in Table
1. Those chord members are regarded as stiffe-
ners at the four corners of the box girder as
shown in Fig. 1.

Table 1 Equivalent Plate Thickness.
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Fig. 1 Idealized Model Section of Stiffening
Truss.
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Fig. 2 Co-ordinates.
If each plate element cut into a width of dw
has a degree of freedom as a rigid bedy, the

displacements #s and s shown in Fig. 2 are ex-
pressed as follows;

4
us=£Zl BT vensssnsissmamrmsssamsspmmiGld)

§m TSR R A ()

Ui=Uy(x) (i=1~4) : Generalized out-of-plane
displacements
Si=Si(z) (i=1~4): Generalized in-plane dis-
placements
Ai=Ay%) (i=1~4): Out-of-plane displacement
modes
Bi=Bi(&) (i=1~4): In-plane displacement
modes
According to assumption 1, torsional equations
are separated from the other equations. In the
absence of distributed external loads, the torsional
equations are

QU —by UA-bo! — By =0 v=e-veeeseeaneeans( )
b U —by - 0:0" =0 =e(4)
byl —bog 4Dy = =0eeeemveeneneenneens (5)

where
U7 : Generalized warping corresponding to mode
Ay
¢ : Rotation angle corresponding to mode B;
# 1 Generalized cross sectional distortion angle
corresponding to mode B

2h .2
dy = EsAse 53‘:23
bsh
by = Giltnbs-+tohs) 5
by = G;(f»,bs~£b.&s) b;hs

v : Generalized stiffness of cross sectional dis-
tortion per unit length
Es: Modulus of elasticity
Gs: Modulus of transverse elasticity
and the modes A,;, B, and B: are as shown in
Fig. 3.

mode M

mode Bz

Fig. 3 Generalized Displacement Modes.

Let @ be a torsional moment, B be a bimo-
ment, X be a cross sectional distortion moment,
namely a transverse bimoment, then these gener-
alized forces are given as

B=—gu,l" ,......................................( 6}
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Q=bU—byg' + b
X=—b1U+ by’ —b:0"
If Eqgs. (3) and (4) are expressed in the form

of f(x), the generalized displacements U(x), ¢(x)
and &(x) will be expressed as follows.

Tl i P monsonsnsc veseionssmamvnsrassnsmsisna tsasss (9)

g c;.;fl f(o_% f(sj+% e (10)
o

(7] - -f (11)

Letting y—oco from assumption 2, #=0 can be
obtained from Egq. (11). Substituting Egs. (9)~
(11) into (4) and assuming y—co, Eq. (12) is ob-
tained.

o2
fm_,!f_fzfce::o .............................. (12)
where
b2 —by?
GsJs=————: St. Venant's torsional rigidity

b
ly: Distance between joints used in the stiff-
ness equation.
When #=0, the relation between @, B, ¢ and U,
from Egs. (6), (7), (9) and (10), becomes

Q== (B —b)f" — by f®) wvv(13)
B s FO ol SEd R (14)
95=b_12(51f_@wf(2>) s (B

LI fl sviaesiessvvnasssssssraonsspnasasssaaserees(16)
The general solution of Eq. (12) is as follows.

f=C;sinh 1:}‘19:—1— C; cosh -%{x +Ciz+Cy
saesssnszass (1T

The following stiffness equation for the girder is
obtained from Eqs. (13)~(17) and the boundary
conditions as shown in Fig. 4.

/Bblub

Fig. 4 Boundary Conditions.
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3. ANALYSIS FOR FREE TORSIONAL
OSCILLATIONS OF A SUSPENSION
BRIDGE

In order to set up the equation of free tor-
sional oscillations for a suspension bridge, the
following assumptions are added;

The amplitudes of oscillation
are very small.

The inertial masses of cables
concentrate on the cable joints
and the moments of inertia of
the stiffening girder also con-
centrate on its joints.

The longitudinal inertial mass-
es corresponding to the gener-
alized warping of the stiffening
girder are neglected.

The movements of cables on
both sides toward the vertical
and longitudinal directions are
the same and in the opposite
phase. Toward the out-of-plane,
transverse direction, the move-
ments of both cables are the
same and in the same phase.

Assumption 3:

Assumption 4:

Assumption 5:

Assumption 6:

Prior to the oscillation analysis for the suspen-
sion bridge, hanger intervals should be properly
widened in order to reduce the number of de-
grees of freedom. Thus a new equilibrium con-
figuration and forces due to dead loads should
be established by the finite deformation theory.

The displacements of the suspension bridge
are defined as shown in Fig. 5. The following
stiffness equations for both cables can be derived
by using assumption 3 and reference 14), The
notations in these equations are shown in Fig. 6.
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Fig. 5 Displacements of Suspension Bridge.
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Fig. 6 Joint Forces and Displacements of
Cable and Hanger.

(dFet) =[1C] {daet) -onveeeeevneeennniennnni(192)
(dFer) =[] {d@eT) cvveenrreeesineienninnes(19h)
where
[dF)y =[H}, Vi, Rid Hy Vi BT
[@Fory=[HyZ, Vi, RS2, Hyg, Vi, BT
=[—Hgt, —Veh R, —HS, — Vit R
{(dzdty =4, nd, ud, & s w/T"
{dzory =[5, 9L, ul, &5, 98, wgl”

=[—&&, —nd, ul, —& —n» w]”

{k°]=[ [kee] —Uﬁ“]]

—[ke] (ko]
ey AeEo i Tid o)
[kee)= =7 =17 s)
{2 sym.

[lf1=|lm m*
In mn nt

1-2 sym.
[I=|—lm 1—m?
—In —mn 1—n®

Ae : Cross sectional area of one cable

E; : Modulus of elasticity of cable

Ly (=L): Unstrained length of cable link

L 1 Strained length of cable link

{,m, n Direction cosines of cable link

T : Cable tension due to dead load

Thus, the stiffness equation of the hanger can
be established. It is permitted that the hangers
or stays are diagonally tightened. With reference
to Fig. 6, the stiffness equation of the hanger
becomes as follows,

{dFM) =[k"] {dx™}
{dFhry =[k"] (dzr)

R 11
e 1 1)1
where
(dFMY =[H M, VAL RAL A VAL RATE
{dFM‘} =[Hyﬁ:‘r' V;&r’ Rpﬂarl Hp"-!f’ thr, Rpiar]i"
=[—Hp, — Vi Rp —HN, — VA, RYT
{dxk?.} =[U’I’ Cr‘!. L’”‘. &'5' T“"l uL]T
{darry =[U'T, L', v'r, &7, 7, um]T
=[_Ufi' __CH!‘ yre‘ _é!' _,?e, u‘}"

(k2 ]:[ [Jehi) -[kml}
— [kt [Jeh]

A T
) =2 g Ty

=[], [M=[if] in Eq. (19), but direction
cosines are for a hanger
Ap : Cross sectional area of a hanger
En : Modulus of elasticity of hanger
Jio (=h): Unstrained length of a hanger
h : Strained length of a hanger
T : Hanger tension due to dead load
The eight displacements, &, 3%, u?, U't, ', o',
U and ¢ appear in one section of the suspension
bridge, but five of those displacements remain
independent because the following relations are
derived from the displacement modes shown in
Fig. 3.

U= —%U snmTE e e
4
b
C:z=.?" Getssinsavsiveiiian(29)
v"=—!;§'¢ sk i(28)

The joint forces acting on section i of the sus-
pension bridge are shown in Fig. 7.
The equilibrium equation at the i-th joint of
the left side cable toward the & direction is
‘_mciéi"—H;;ﬁ-:_Hpﬂi"Hy’fai:o """ (24a)

and that of the right side cable is
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Fig. 7 Equilibrium at Section i.

—meET—H o — HZ— Hi=0 ----(24b)
The above two Egs. (24a) and (24b) coincide with
each other utilizing Egs. (19) and (20). Analog-
ously, toward the » direction we have
— i Bl — Vil — Ve — V=0 coveen (25)
At the i-th point of the left side cable, the
equilibrium equation in the u direction is
—mgtif — Ry — Ry —R =0, - (26a)
and that for the right side cable is
—m 1] — Ry — RS —R41=0 ---+(26b)
Egs. (26a) and (26b) also coincide with each other
utilizing Egs. (19) and (20).
From the equilibrium for the stiffening girder,
the following equation is obtained.
b, s

. be
~Ipside— Vil 5+ Vi ;‘—" pit

h
R = Qoti— Q=0 vevee(2Ta)

This equation, from Egs. (19) and (20), reduces
to

—Ipsi pi—be V ik — hsR Y — Qpim1 — Qui =0

The equilibrium equation for the bimoment of
the stiffening girder will be
bckg bcks

Bb$—1+Bﬂ-t"Hp}:A‘€ —'4—+Hp’§’¢ 1 =0,
.............................. (28a)
and can be reduced to
b
T R S — (28b)

These equations will be transformed to expres-
sions in the term of one bridge in order to
utilize the structural matrix analysis method,

2me Sl +2H 5+ 2H A 2H 5 =0 +-+(292)
2maii +2Viha2Vin+2V =0 -(29b)

2 dif +2R S 2RS4 2RAI=0 ---(29¢)
bsh
— = it Byt Bu=0oeveveveoenes (294)
Tpsi i+ 0o VI +RsR Y+ Qi1 + Qi =0
.............................. (29&)

Eqs. (29a)~(29e) can be arranged into the follow-
ing matrix expressions:

2moi E1(d&{") +2(dFis) +2{dF
+2(dF ) = {0) +e-reeemeo-(30)

(M) (da ) +2[Dd{aF ") + (dFi)

+{dF4) =10} svssnnss(31)
where
[£]: unit matrix
0 0
[a"rfsi]z[o [‘NJ
[Ds]:[_bcksj'"l 0 0 ]
0 b2 hef2):
(daft) =[&}, ni, u/1*
(dzf) =[Ui, ¢:)7
Thus, combining Egs. (21), (22) and (23).
{de i) =[0", 1, v F
—behsf4 0 i
=l 0 b [é]
0 hsf2) i -
=[DAT{AzE)  oeerermrnemminneeeennn(32)

Hence, Egs. (30) and (31) are rewritten as follows,

[Me:){di ') + (dFyL,) + (dF
+ (dF,¢*) = {0}
[Ms (@) + (dF )+ (dFi)
+ (AR} ={0) ceveressseeeeren(34)
where
ez 0 0
[Me]=2| 0O mew O
0 0 ey
{dFet) =2(dFe)
=2[ k] {dx"}
=[ket] (dzt)
[D] [M]{WFJ”]}

{d}:.’zc}zzli L
[0] [E]

(dF,"1) )
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=2[[Dl [0]][?»'"][{0] [0]]{{0‘9:3}}
(0] [E] [0] [E1]({dz)

_ s (1027
= [kk&] { {d‘rc;}

From Fig. 8 as well as Egs. (33) and (34), it is
found that an oscillation analysis for a suspension
bridge is possible by the displacement method
for plane framed structures with arbitrary con-
figurations. In that analysis several assumptions
are made, i.e. the cables and hangers are regarded
as bars with tensions, and the stiffening truss is
regarded as a beam (not beam-column) subjected
to axial forces. Therefore, that analysis is theo-
retically applicable not only to suspension bridges
but also to cable stayed bridges.

{dxs} {dx?&l}
Fig. 8 Model for the Displacement Method.

The method of dynamic analysis for such a
case relies on the ordinary method in the matrix
method, for example, the one presented in re-
ference 6).

So far almost all the effects including the longi-
tudinal and transverse inertial masses of cable,
the hanger elongation, and the hanger inclination
have been taken into account. Thus, the number
of independent degrees of freedom amounts to
five per one section of the suspension bridge.
When the following assumptions are added to
the predescribed assumptions (1)~(6), the number
of independent degrees of freedom becomes only
one per one section of the bridge, and the analy-
sis is simplified.

Assumption 7: The elongation of hangers is
neglected.

All the hangers are vertically

suspended.

The hangers do not affect longi-

tudinal restraints of the stiffen-

ing truss and cables.

Assumption 10: The longitudinal inertial forces
of cable are neglected.

Assumption &:

Assumption 9:

Assumption 11: The transverse stiffness resist-
ance of hangers and the trans-
verse inertial forces of cables
in the out-of-plane direction
are neglected.

Although these conditions are easily processed by
a computer program for Egs. (33) and (34) using
the matrix method, the following study will be
presented and developed in order to investigate
the meaning of these assumptions.

With these conditions, the equations corre-
sponding to Egs. (29a), (29b), (29d) and (29e) be-
come as follows,

2H G, 4+ 2H =0 ceoveneeerinseninin(35a)
2mend +2V S 2V +2V =0 --(35b)
BiigBagm=0 sererssssersrarnnrarranenaeaaan (35¢)
Tpsi Gitbe Vi 4 Qi+ Qui=0 «ovvvvene (35d)

When the following Eq. (36) holds, Egs. (37) and
(38) are derived

(dFe)=[Hz, Vi, By, ViEF
=(dF¢} (cf. Eq. (19)
(dz) =[6¢, 74, &5 01"
=(dz%) (cf. Eq. (19) |
{dF$)=[Q}, B}, B}, @1 (Note; the
order of elements in Eq. (18)
is reversed.)

{dx} =[da, Ua, ¢v, Up]”

.............................. (36)
(dFet) =[ke] {dxcl} ........................... (37)
(A =[J3] (@ast) woemrmemmnrmmrnmmnneenniens (38)
where
[ket]: [k€] in Eq. (19), omitting elements re-
garding to displacement u
[k$]: [k*] in Eq. (18), but the order of ele-
ments has been changed
Since
Sh=— VAL, e (39)

eliminating hanger terms from Eqs. (35b) and
(35d) gives
Msiboiid 4 Inst §i+ e Viiior + Viidi)
+ Qi1+ Qai=0 +r-eeeere (40a)

Because of the continuity of displacements by
assumption 7, it is found

e
P=—p (41)
Thus Eq. (40a) becomes
b} n
(Bt I fitbolVihoat Vi)
+ Qpi—1+ Qai=0 oo (40b)
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When the notation

is introduced for the convenience of derivation,
Eq. (35a) becomes
prM_]_{_Hp.ra‘:g {43}
Egs. (43), (40b) and (35¢c) are the basic equation
of the problem concerned.
From Eq. (41)
(A2 ) =[RI{d@t?] -oovevemerioininniinn(44)
where
{dxce} :[6é Ll Ebrt ¥ EJ 3 éb]T
[R']=[diagonal (1, b¢/2, 1, b¢/2)]
If Hj* is transformed into H,/, and V" is trans-
formed into @ by multiplying s, we get
[dFet) =2[RY){dF*) R € 5)
where
(dFet)=H/, Qi Hy, Q1"
Substituting Eq. (37) into Eq. (45) gives
(dF o2} = [k {dae?) --rmmmmremennnneeneen (46)
where
[kez]=2[RY] [k [R]
The next operation will be done in order to ar-
range the displacements in the cable and stiffen-
ing truss.
As to the cable, the stiffness eqguation is

(dFB) =[k>] (dxB) -:(47)
where
(dFP}=[H/, Q.. By, H/, @y, B,]
(da®) =[£4, ba, Ua, &y by U)J¥
Bk O k% kit O
kst ks O ki it O
0o 0 0 0 0 0
=) kg kst 0 kg kst 0|
ki k3 0 ki ki 0
0o 0 0 0 0 0
é. 'tg;s:fy # _‘.130”“:042197 BRI
) wondi | S
031571

and concerning the stiffening truss

(dF ) =[] (dx?) e )|
where

0o 0 0 0 0 0
0 kit ki 0 ki kil
% 0 kif kit O kif ki
1= 00 0 0
0 kit kif 0 ki Kl
0 kif kit 0 ki ki

The combined stiffness equation for both the
cable and the stiffening truss is obtained by ad-
ding the two equations, that is,

(dFE) =[k*](dx?)
where

[RB] =K [K2] wooveremrnmrmmnnnnsnnnnnsinss (50)
Matrix expression of Egs. (35¢), (40b) and (43)
with the above notations gives

M {dxP) + (dFEL) 4+ (dF ) =0o-(31)

where

0 0 0
[Mil=|0 [Qpsi+bFmef2 0
0 0 0

From Eq. (50), it is found that we can analyze
the case even if the stiffening truss partially
exists during an erection stage.

4. CONSIDERATION BY NUMERICAL
CALCULATIONS

The design factors of suspension bridges vary
widely according to design methods, loads, natural
conditions, etc. So the effects of various design
factors on the torsional frequencies may be dif-
ferent for individual bridges. In this paper, a
bridge which is regarded as a standard long span
suspension bridge with a center span length of

1 Asc=0.1054m2
" Asd=0.0475
@
==y T Asl=0.0344 »
.
o
=
of «
m; { Asl
P
L g A
L m

38 13 494

300

.00

Fig. 9 Two-Hinged Suspension Bridge.

Fig. 10 Stiffening Truss Data.
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about 1,000m is adopted. The influences of the
design factors of the bridge will be studied, com-
pared with the results by conventional methods.

Numerical calculations are performed with a
two-hinged suspension bridge having span lengths

Table 2 Properties of Members.
(per one side of br.)

300 -1,000 - 300 m adopted in reference 14) and
shown in Figs. 9 and 10. The member proper-
ties and the dead loads are shown in Tables 2
and 3, respectively. The moments of inertia of
stiffening truss and cables are shown in Table 4,

Table 3 Dead Loads.

(per one side)

Member Terms Value Member %%I;t:r Side span Direction
E: 2.0%107 t/m?
Cable 6.3102 t/m | 6.2095t/m | cable direction
Ae 0.75398 m? Cable
6.4471 t/m | 6.6164 t/m | horizontal direc.
En 1.4%107 t/m2
Hanger Stiffening truss | 16.0 t/m| 16.0 t/m | horizontal direc.
Ay = 0.01621 m?2 =
Es 2.1x107 t/m? Table 4 Moment of Inertia.
G 8.1x10% t/m? (per one br.)
iy 2.117%10-3 m Member Center span Side span
Stiffening truss -
in 3.349%10-3 m Stiffening truss 9200 tm?/m 9 200 tm2/m
Gals 1.475%10% t/m? Cable 3301 # 3388 #
A 9.576x1010 t/m4 Total 12501 # 12588 »

Note *1: per one hanger every 13m interval.

Table 5 Calculated Cases.

| .| Spring Degrees : o
Case | micz | ey | Mez C:&';?f cotr:’s;_e?f T T freggnm &?gfn Description
|
. The number of degrees of freedom per
L = o - - - T - 1 A one section is one.
The number of divisions is two times
2, —| 0| - - - Ty - a7 -5 that of case L.
n The hanger elongation is considered in
E o 7N B - - T o i % case 1 g . :
B The longitudinal inertial forces of cables
4| 0|0 |- - - Ta € 53 =y are considered in case 3.
5 o O — stay — T O 53 o Center-stays are equipped in case 4.
6. O Q — tie = TE O 53 z Center-ties are equipped in case 4.
& The cable equation is Melan's equation
! = | & || = = - Tyjcostaw| O 3 4 in case 3.
1 o 1o o) 53 i Spring constants of towers are considered
81 0O o = == w in case 4,
~ e 53 p Center-says and spring constants of
9 2 O = stay LS w O towers are considered {n case 4.
N " N . Qut-of-plane, transverse, resistance of
w|—-|10| 0 = S T o 58 f hangers is considered in case 3.
| | . | - Differential equation method for the de-
ik — O = = e Tgeostaw| — 17 B flection theory is used.
i o . ) . Rayleigh-Ritz method for the deflection
12 — | & ™= e = Tjcosaw| — 10 ¢ theory is used.
13 8] (0] — stay - Tocostay| — 17 B Center-stays are equipped in case 11.

Notes: #tez, Moy, Mez=longitudinal, vertical, transverse (toward out-of-plane divection) inertial masses of the cahles,

respectively.
T‘f’ L TI:"

=tensile forces of the cables and the hangers due to dead loads, respectively.
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and the new equilibrium configuration under the
dead loads has already been calculated by the
finite deformation theory program, which is
shown in Fig. 11. The conditions of calculation
cases are shown in Table 5. Inertial masses #z,
Mgz are neglected in some cases.

unit:m Im“-&' y p

T X

I ——Mex

¥ Z

Mez
Ips,.‘l

& — i ' Ths
'_‘5_@_60:300 | 5@100=500 ==

Fig. 11 Oscillation Model of the Suspension
Bridge.
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=
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8000
T 3000 | Upper Strut
o = Tower Shaft
By 4. 10 =
=) =M 15
N T ok
= 8000 B00g
~F f;
Lower Strut Bracing
i
~32N

Fig. 12 Tower Model.

In Cases 5 and 9, the sectional area 0.012968
m? of the center-stay member is comparable to
the original design. In Case 6 the sectional area
of the center-stay member is enlarged 100 times

141

that of Case 5, which is regarded as a center-
tie.

In Cases 8 and 9, the tower configuration and
the member sections are assumed as shown in
Fig. 12. Torsional forces to obtain the spring
constant of the tower is shown in Fig. 13. There
are two ways to estimate it. One is that all
members are assumed to be beams with sectional
area, moment of inertia of area and St. Venant's
torsional rigidity. Alternatively, it is assumed
that the tower shafts are beam-columns and the
other members are the above-mentioned beams.

Fig. 13 Torsional Forces for the Tower.

In the former case the spring constant is 2.09 x
10%t/m per one side of bridge and that in the
latter case is 1.923 % 10° t/m per one side of bridge.
The former value is used in Cases 8 and 9.

In Table 5, computer program A(XHONSIK/
DYNSPACE) was prepared on the basis of the
present theory by the authors. The calculation
time in Case 4 was about 140 seconds by Bur-
roughs B6700. Program B was based on linearized
Melan’s equation and the cable equation. The
torsional rigidities are evaluated by Bleich’s
method?”. The hangers are assumed to be a
membrane without shear resistance. This method
is fundamentally identical to that presented in
reference 8). Program C was made by utilizing
the equations presented in reference 4), and 6

Table 6 Comparison of Periods (second).

T
Mad_e;h“"““%———__ffffs__‘ 1 | 2|3 | 2|5 |6 | 7| 8|9 ]| w|mn |I 12 | 13
1 First symmetric 3.877 | 3.865 | 3.863 | 3.871 | 3.874 | 3.874 | 3.874 | 3.848 | 3.862 | 3.855 | 3.892 | 3.850 | 3.892
2 First asymmetric 2.797 | 2.768 | 2.774 | 2.817 | 2.605 | 2.588 | 2.781 | 2.817 | 2.586 | 2.766 | 2.748 | 2.748 | 2.468
3 Second symmetric 1.883 | 1.840 | 1.873 | 1.887 | 1.890 | 1.888 | 1.877 | 1,886 | 1.887 | 1.870 | 1.829 | 1.811 | 1.829
4 Side span (asym.) 1.670 | 1.650 | 1.618 | 1.646 | 1.621 | 1.596 | 1.625 | 1.639 | 1.595 | 1.617 | 1.579 | 1.578 | 1.536
5 Side span (sym.) 1.612 | 1.591 | 1.571 | 1.589 | 1.589 | 1.589 | 1.578 | 1.588 | 1.588 | 1.570 | 1.536 | 1.531 | 1.536
(i Second asymmetric 1.440 | 1,383 | 1.440 | 1.453 | 1.440 | 1.437 | 1.443 | 1.453 | 1.437 | 1.438 | 1.391 | 1.357 | 1.391
T Third symmetric 1.186 | 1.107 | 1.181 | 1.190 | 1,189 | 1.186 | 1.184 !. 1.190 | 1.186 | 1.180 | 1.126 | 1.075 | 1,126
8 Third asymmetric 1.025 | 0.925 | 1.020 | 1,028 | 1.020 | 1.020 | 1.022 | 1.028 | 1.020 | 1.019 | 0.959 | 0.887 | 0.958
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terms in the center span and 4 terms in the side
span are considered from the sine series.

Calculated results are shown in Table 6. In
program A of the table, the @R method is used
to obtain the characteristic values, the accuracy
of which was better than 10~ seconds in periods.
Therefore, it may be concluded that the differ-
ences of periods in Table 6 are due to factors
considered in each case where number of degrees
of freedom is identical.

The following are observed from Table 6.
1) The influence of hanger intervals can be seen
by comparing Case 1 with Case 2. The differ-
ence of periods is only 1~2% in low modes which
are the most influential in the design of a bridge,
so the same hanger intervals as in Case 1 are
used in the following cases.
2) The effect of the longitudinal resistance of
hangers is shown in Case 1 and Case 3. The
periods in Case 3 are a little shorter than those
in Case 1, namely, one can not expect the large
effect of hanger resistance between cable and
girder.
3) The influence of longitudinal inertial mass of
cable, #x can be found by comparing Case 4
with Case 3. It hardly affects the periods of
symmetric modes, but increases the period by as
much as 1.5% in the first symmetric mode.
4) The influence of the center-stay is seen by
comparing Case 5 with Case 4. The center-stay
hardly affects the periods in the symmetric mode,
but decreases the period by as much as 4.3% in
the first asymmetric mode.
5) As it is seen by a comparison between Cases
6 and 4, the effect of the center-tie on the periods
of natural vibrations is larger in all cases. The
center-tie hardly affects the periods of symmetric
mode, but decreases the period by as much as
8.1% in the first asymmetric mode. It should be
noted that this effect can be obtained if the sec-
tional area of the center-tie is larger than the
sectional area of cable, and it becomes about
half if a practical member area is used as shown
in Case 5. In the conventional theories, the con-
nection of the center-stay or tie between cables
and stiffening girder or truss has been assumed
to be rigid. Case 13 shows the result by the
differential equation method which is the same
as that of Case 11. In this case, the effect of
the center-stay reduces the period in the first
asymmetric mode by as much as 11% compared
with Case 11 or 14% compared with Case 4.
Therefore, there is the possibility of an unfavor-
able estimation of periods for a practical struc-
ture.

6) Comparing Case 4 with Case 8, the influence
of the spring constants of the tower is found to
be little in both the symmetric and the asym-
metric modes. Consequently, the effect of the
spring constants of the tower alone should not be
expected in long-span suspension bridges.

7) It has been said that*’ torsional frequencies
of suspension bridges with a center-stay or center-
tie are greatly affected whether or not one takes
into account torsional rigidities of the towers.
In Case 9, the effects of both the spring con-
stants of the towers and the center-stay are taken
into consideration. Comparing Case 9 with Case
6 (with center-tie), both effects are almost the
same degree. Although the case, in which both
the center-tie and the spring constants of the
towers exist, is not treated, the effects of those
are expected to be larger than in Case 9.

8) The influence of the out-of-plane, transverse
resistance of hangers is indicated by comparison
of Case 10 with Case 3. By virtue of its little
influence, one may be allowed not to take into
account the effect of such a resistance in future
calculations.

9) The influence of decreasing cable tensions by
as much as cos®ay times in Melan's equation is
found to be very little by comparing Case 7 with
Case 3.

10) Comparing Case 11 and Case 12 with Case 2,
both the differential equation method and the
Reyleigh-Ritz method for the equations of the
deflection theory show good approximation in the
absence of a center-stay.

5. CONCLUSION

1) With the aid of the thin-walled elastic beam
theory by Vlasov, a torsional stiffness equation
for a stiffening truss with a biaxially symmetric
and rigid cross section has been derived as shown
in Eq. (18).

2) Bi-moment of a truss is estimated practically
as the balance of force between truss, hangers
and cables. Thus, influences of diagonal hangers,
center-stay or tie, longitudinal inertial masses of
cable, etc. can be analyzed more easily and cor-
rectly than has ever been done before.

3) The matrix method is used for the torsional
oscillation analysis of suspension bridges. The
stiffness equation of such a bar member subjected
to axial forces as cables, and the stiffness equa-
tion for a stiffening truss are firstly derived.
This method is applicable to the torsional oscil-
lation analysis for arbitrary suspension bridges,
both during erection and in completed stages.
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4) In long span suspension bridges without a
center-stay, it is permissible to neglect the in-
fluences of longitudinal inertial masses of cables
and out-of-plane, transverse resistance of hangers
for the estimation of torsional oscillation periods.
5) When a center-stay is equipped in a suspen-
sion bridge, the torsional oscillation periods should
be calculated with the practical cross sectional
area and lengths of the center-stay members,
considering the spring effect of the tower and
longitudinal, inertial masses of cable. If the
analysis is made with a rigid connection condition
as in the conventional theories, one may get an
unfavorable estimation for periods, namely shorter
periods than the true ones.

6) In calculating the torsional oscillation periods
of a suspension bridge without a center-stay, the
conventional methods based on the deflection
theory including the Rayleigh-Ritz method have
sufficient accuracy.
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NOTATION

on Co-ordinates

(s, &5, #s): Local co-ordinates in box girder
(Fig. 2)
(x,y,2) : Global co-ordinates
on Dimension

Ase, Asay Az Cross-sectional areas of stiffening
truss members

As :  Cross-sectional area of one cable

Ap . Cross-sectional area of one hanger
used in its stiffness matrix

be : Distance between cables

bs : Width of stiffening truss

h(ho) : Strained (unstrained) length of
hanger

s : Height of stiffening truss

(1, m, n) Direction cosines of cable under
dead loads

Iy :  Joint interval of stiffening truss

L(Ly) Strained (unstrained) length of
cable used in its stiffness matrix

ty, tn :  Equivalent thicknesses of lateral
and main system in stiffening
truss

on Displacement

(&, n, u) Components of joint displacement
of cable (Fig. 5)

(U, Z,v'): Components of joint displacement
of hanger connected to stiffening
truss (Fig. 5)

U : Generalized warping of stiffening
truss (Fig. 3)

[ : Rotation angle of stiffening truss
(Fig. 3)

4] :  Generalized cross-sectional distor-
tion angle of stiffening truss (Fig. 3)

on Force
B : Longitudinal bimoment of stif-

fening truss

Components of joint force incre-
ment of cable (Fig. 6)
Components of joint force incre-
ment of hanger (Fig. 6)

(e Ve R

(Hy, Vi Rp):

H/}=2H7

Q . Torsional moments of stiffening
truss

TE : Cable tension due to dead loads

T : Hanger tension due to dead
loads

X :  Transverse bimoment of stiffen-
ing truss

on Mass

Iyer  Joint moment of inertia of stiffening truss
me: Joint mass of one cable
on Stiffness
tw . Generalized warping rigidity of
stiffening truss

E;, En, Es: Moduluses of elasticity relating to
cable, hanger and stiffening truss,
respectively

Gs : Modulus of transverse elasticity
relating to stiffening truss

G /s : St. Venant’s torsional rigidity of

stiffening truss

on Subscript (under the foot or on the shoulder
of letter)
a, b: Distinguishing member ends
Referring to cable
Referring to hanger
: Number of joint or member
Denoting left side
Denoting force increment
Denoting right side

N k3 Ym0
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s Referring to stiffening truss

w Denoting condition under dead loads
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