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Introduction

Honshu-Shikoku Bridges connecting the main
island and Shikoku in Japan will have many,
simple or 3 span continuous parallel chord truss
bridges with about 80~ 120m span, each of which
carries roadways on a top deck and 4 track rail-
ways on a bottom deck. The truss bridge is
horizontally folded on its supports, the pier
hight is about 50 m and the influence of eccen-
trically applied live loads is large, therefore, it
is feared that the static or dynamic property
particularly due to bridge torsion or cross-
sectional distortion will appear.

In this paper a method of spatially analyzing
a truss bridge has been studied for the beginning
of its design, when its bridge width or sway
bracing frame is determined after investigating
its torsional behavior.

The analytical method used in this paper is
fundamentally based on the Vlasov's thin-walled
elastic beam theory, having the following features.

(1) A cross section of a truss bridge will be
bi-axially symmetric, (2) The displacement meth-
od (stiffness method) is used, (3) Since truss mem-
ber forces and displacements can be always
broken down into both a generalized force system
(Fig. 2) and a degree of freedom force system (a
provisional name) as shown in Fig. 4, the reason
of the truss behavior is able to be found, (4) In
the analysis, sway bracings will be exist discrete-
ly, or as in actual bridges, (5) Coordinate trans-
formation equations for static quantities of the
generalized force system have been derived by
utilizing those of the degree of freedom force sys-
tem.

Stiffness Equation for a Straight Truss Bridge

In the first place, a truss bridge is replaced by
a box girder in which diagonals and lateral
bracings are transformed into thin plates equi-
valent to shear deformation, and these plate
thicknesses are denoted #» and #, respectively.
The chord members are regarded as stiffeners at
the four corners of the box girder, intermediate
or end sway brackings as springs resisting cross-
sectional distortion. Then the truss bridge is
transformed into such a model as shown in Fig. 1.

If generalized forces and displacements of
truss is defined as shown in Fig. 2, eight equa-
tions of equilibrium for the part of the box
girder intercepted by adjacent sway Dracings

Fig. 2 Generalized forces and displacements.
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are obtained due to the Vlasov's theory. Five of
them are equations regarding axial force, bending
and shear which are generally well known, and
the other three regarding torsion, distortion and
warping. Three equations regarding the torsions
are as follows.

asz"—buDz+sz1’—ans’=0 ( 1)

beDo —bi Dy 4 baDs” =0 orreeerriirinrearnnnn (2)

b1Dz'—bJ)1”+b1Da”=0 """"""""""""" (3)
where

aw=Ebh Acl4, bi=Gs(h*Fo+b*Fn)/2

bo=Gs(— W Fo+b*Fn)[2, Frn=htn, Fo=bly

Ae: cross-sectional area of a chord member
The stiffness equation regarding the torsions is
obtained from Eqs. (1)~(3) and with boundary
conditions. The stiffness equation of the genera-
lized forces [Fi™} (i=1~8) and the generalized
displacements (D™} (i=1~8) consist of the
above-mentioned stiffness equation, a well-known
equation of beam with shear web and that of
axial member, expressed as follows.

(Fem) =K (Dem)
where

(Fi")=[Ffs, Fis, -, Ffs, FB, -, F§)T

(D™ =[Dfs, D, -+, Dgu, D, ++, D&]”

a, b: Subscripts distinguishing member ends
The sway bracing rigidity per one frame [I's is
obtained from the following equation for the
deformation as shown in Fig. 3.
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Fig. 3 Rigidity of sway bracing.

TB=F3;'D3:4}L2P;"3 sererisenasnenenneases (5

which becomes Ds-element of the sway bracing
stiffness matrix [R™] (8x8). If the degree of
freedom forces [f™) and degree of freedom dis-
placements (d™} are defined as shown in Fig. 4
in order to easily process the boundary conditions
on the supports, the coordinate transformation
equations between that system and the generaliz-
ed force system are given as follows,
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Fig. 4 Degree of freedom forces and dis-
placements.
(fm) =[TU]{FM} wroeeeermmmrensmsnninsnnncnnn (6)
{D‘“} :[_TI]T{dm} ................................. ( 7 )
where
- 0 —1/k 0 —1/2h 0 —1/2b 0 1/44
0 1/obh 0 —1/2k O 1/26 0 1/4
0 —1/pr 0 1/2h 0 126 0 1/4
= 0 1/bh 0O 1/2h 0 —1/2b 0 1/4
(=l yon 0 122 0 0 0 120
—-1/26 0 1/26 0 1/2 O 0 0
—-1/2n 0 -=1/22 0 0 O 1/2 0
- 1/26 0-1/26 0 1/2 O 0 0-

then the equlibrium equation expressed with the
degree of freedom force system at j-cross section
becomes

(fEdo+ (fB)at[r™- (@™ = (AP} - (8)
where

{fem =[fTe, fia, -, f¥u, f3) -, FRI"

™ =[TJR™[T:]"

{4P):
Using the boundary conditions for Eq. (8), the
solutions of the displacements and forces in the
degree of freedom force system are obtained with
the displacement method. Transformation of
the degree of freedom forces into truss member
forces are performed considering the property
proper to truss bridges, but the details have been
omitted here.

External force vector

Stiffness Equation for Folded Truss Bridge

Coordinate transformation equations for a
folded truss bridge as shown in Fig. 5 are derived
in the order as shown in Fig. 6, and the coordinate
transformation matrixes [T#] and [Tp] in the
generalized force system are
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and the other transformation equations shown in
Tig. 6 have been omitted here.

Numerical Analysis

The accuracy of the authors’ method (denoted
A-M) is examined by comparing the numerical
values from A-M with those from the so-called
matrix displacement method considering indivi-
dual members (denoted MD-M) for the folded
truss bridge shown in Fig. 7 with the load con-
dition shown in Fig. 8. The axial forces of the
top chord members and sway bracing members
are shown in Fig. 9 and Fig. 10. The other exam-
ples have been omitted here. This results show
the good accuracy of A-M,

Fig. 9 Axial fcrce of B- 51de top chord.
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Fig. 10 Axial force of sway bracing member,



