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LINEARIZED FINITE DEFORMATION THEORY
IN SUSPENSION BRIDGES

By Yuichiro HayasHr*

1. INTRODUCTION

The deflection theory of suspension bridges was
originated by W. Ritter in 1877, Miiller-Breslau
in 1881, and J. Melan!? in 1889. In order to solve
Melan’s equation, a full treatment was given by
many researchers including S. Timoshenko®, D.
B. Steinman®, D. J. Peery, and others.

When developing Melan’s equation for suspen-
sion bridges, the following assumptions were used.
Assumption 1: The distance between hangers is

so small compared with the span length that
hangers may be replaced by a screen.

Assumption 2: The cable curve is parabolic un-
der dead load.

Assumption 3: The initial dead load is carried
by the cable without causing any stress in
the stiffening frame.

Assumption 4: The horizontal displacement of
the cable may be neglected.

Assumption 5: The elongation of hangers may
be neglected.

Assumption 6: The inclination of hangers may
be neglected so that hangers remain vertical
in the strained configuration.

Assumption 7: The shear deformation of girders
may be neglected.

Since Timoshenko's work many studies have
been done to investigate the secondary effects
such as horizontal cable displacement, hanger
elongation, hanger inclination, shear deformation
of girders, finite spacing of girders, and so forth.
Notable work was done by H. H. Rode® on the
effect of horizontal cable displacement in 1930.
A. Selberg® derived an equation taking the in-
clination of hangers into consideration. It had
been known that the cable equation determining
the additional cable tension caused by live load
or temperature change was based on the small
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displacement theory. The auther appreciates
Selberg’s work? in which he took the effect of
cable tension in the cable equation into account.
For the lateral bending of a suspension bridge,
L. S. Moisseiff and F. Lienhard® proposed the
elastic distribution method in 1933. C. Z. Erzen®
showed a workable method to solve the equation
derived by Moisseiff's theory.

The recent advance of digital computers and
matrix methods in structural mechanics has made
possible the analysis of a suspension bridge in the
form of a framed structure. D. M. Brotton and
G. Arnold presented the distribution matrix
method. T. Poskitt developed a method of analyz-
ing suspension bridges by the Newton-Raphson
Method. In 1966, S. A. Saafan'® showed his
finite deformation theory in which he tock the
flexural shortening and the bowing effect of a
beam-column into account and applied it to a
suspension bridge. Since then, the analysis of
suspension bridges has become merely a part of
the finite deformation method or the matrix
method in structural mechanics. During this
stage of development, several authors in Japan
including S. Goto!®»1#) and T. Fukda'® contribut-
ed to the advance of suspension bridge analysis.

Nowadays the finite deformation theory is ex-
tensively utilized for the static and dynamic prob-
lems of the longspanned suspension bridges which
will be constructed between Shikoku and the
main island of Japan. This author has devoted
himself to that work and has undertaken to de-
rive the formulas appearing in the deflection the-
ory from those of the linearized finite deformation
theory and to give the theoretical background to
the linearized finite deformation theory.

It has been hitherto said that in the deflection
theory the change in configuration caused by live
load is taken into account. The author has shown
in this paper that this description may not be cor-
rect and should be replaced by the one that the
deflection theory is based on the small displace-
ment theory in which the effect of cable tension
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is taken into account. As it is not the primary
purpose to solve the reduced new differential
equations, the effect of temperature change is not
taken into consideration in this paper. The nota-
tions used in Sec. 3 are listed in the Appendix.

2. RIGIDITY OF THE BAR MEMBER
AND ITS PHYSICAL MEANING

Considering a bar member in three dimensional
Cartesian coordinates (x, ¥, 2) subject to an axial
force T, with a sectional area A and modulus of
elasticity £ as shown in Fig. 1 (for simplicity, it

Fo+dFy T+dT
y yb+ dFy
Yo+dYb et

b
Ya+dYa

Ya
Fa| T R

o Xa Xa+dXa Xb Xb+dXb
Fig. 1 Glabal coordinates

is shown two dimensionally), its stiffness equation
is expressed as follows:

AFO=FOdK orrererrnreensrrnararsernnsnsrinnns 1)
where
AdF9=[dFea, dya, d Fea,
Al dFy, dFs]”
dx:[d$a, d?}a. dzn,
dxzy, dyp, dzp]”
k”:[ Koo _kao}
. T koo
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00 — ; =3 Rasesas 2
k T 1+ le (2)
1% sym.
Li=lm m®
In mn n®
1-172 sym.
L=|—Ilm 1—m?®
—In —mn 1—n?
a, b: Subscripts to distinguish the two ends

of a member

oy Lt unstrained length and strained length,
respectively

dig, -, dzy: displacement increments of the
first order

dFea,+++, dFw: force increments of the first or-
der

I, m,n: direction cosines of the member axis

If a system of Cartesian coordinates (z', ¥/, 2’)
is taken with the origin 0’ at one end of the
member and the axes so directed that 0’z’ co-
incides with the member axis, and axes 0'y” and
0’z' are perpendicular with one another, (the lat-
ter ones may be set in any position as shown in
Fig. 2), the following stiffness equation is easily
derived for the new coordinates.

y
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Zz
Fig. 2 Local coordinates
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100 000
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Equation (3) can also be derived from the prin-
ciple of minimum potential energy'®. In this case,
Ly is replaced by L in Eq. (4). It should be noted
that Eg. (1) or (3) is a linear equation concerning
forces and displacements so that the influence of
deformation of structure is not taken into con-
sideration in equations derived from Eq. (1) or (3).

Equation (3) shows that a bar member subjected
to a tension T holds a longitudinal rigidity AE/Ls
and a lateral rigidity 7/L. The meaning of the
longitudinal rigidity AFE/L, is apparent in view
of the small displacement theory. The physical
meaning of the lateral rigidity 7/L may be ex-
plained in the following example of free vibration
of a chord with a tension 7" and a linear density
p shown in Fig. 3.
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Fig. 6 Equilibrium about cable point {

Applying Taylor expansions to Egs. (8a) and (8b)
in an unloaded position, we obtain

Huyppi—y+dHpim1+ Hipat +d Hai+0(2)=0---(9a)

Vasvi—1~+d Voim1+ Vavai +d Vai+ Wei
F Rupi 4 dRi+0(2)=0 -oorvveerrieniiens (9b)

in which o(2) denotes the small quantities of the
second order, and from Eq. (2) we get

AR =Ry ooeernrnnseemmssnnnneessenneeeaes (10)
where
AdF;=[dHq, AVa, dHy, d V)7
dx;=|dxa, dya, dzs, dys]}

ke — ke
k":[—kc kc}

kc:[k“ klz]

fear  Foos
AoE, Tw .
]gus—;—c cos® a’w+—f“ sin® ay
lon=kie= Auks —-’—Cw-) Sin ety COS @
2= lvip= I,u L w w
A 7;
kae= offo sin? ey +— c0s? Qo

L

Here the formulation of the problem is best
developed by adding the following basic assump-
tion.

Assumption 8: The second order of small quan-
tities in Taylor expansions may be neglected.
Using Assumption 8, Egs. (8a), (8b), (9a) and (9b)
can be written as
A iy - A gm0 s ssrsrasssssanpsararsssnssssns(T14)
A Vit 4+ Va4 dRi=0 -++reveverivennnenn(11b)

The cable equation will first be derived. From
Egs. (11a) and (10), we find
dHyi=const. (=dH)
-‘-—'—knc(dxm——dxm) kxzt(d.}ai—-dym)
(12)

If both sides of Eq. (12) are divided by ki, and
summed up over the entire cable span, with
boundary ct}nditions. we have

klﬂi—l )
e 3 =0
klli—l yt

dIE

_"5122,
kni EH (-‘Cui

Substituting k¢ etc. in Eq. (10) into Eq. (13),

using dx=L;cosa,, and neglecting the small
quantities of the second order of d=(Hy sec auwi-
tan? awi)/AeEe through the calculating process and
letting 4x—0, we obtain

Hp et i d2.y ‘c’
A.E, S W da* ). "
Hy d
—— —_— 8 =
Wil Sc Ly (tan ay, sec® aw)dz=0

in which ¢ and ¢’ denote the fixed points of the
cable and the conventional notations, y and Hyp
of the deflection theory instead of dy and d/ have
been used. As for the deflection theory, it is
convenient that the positive direction of the y
axis is taken as downward, and even in that case
the form of Eq. (14) remains unaltered.

Next, the equation of vertical equilibruim for
suspension bridges will be derived. Eliminating
the term (d@ai—dxpi) from between Egs. (10) and
(12) gives
km’. kmkm

- Mu—kudbwe )
klll lr‘Clll'. y; ly{+1)

=—dH (tan Qi —

AVgi=——F—

Ho .
—A E AN i SEC” i

Huw t
A Ea an® Mani
4d
. sec? aws) AR (15)

Since dVpit=—d Vai—1 by Eq. (10), Eq. (11b) be-
comes

A Vi —d Vot =4dVaimy=—dRg--++-+--+---(16)
Dividing both sides of Eq. (16) by Jx, substitut-
ing Eq. (15), using

dR; - 4 ( d*yi—

= Tt Esly ) .................. (17
neglecting the small quantities of the second or-
der of 4 and letting Jx—0, we arrive at
d‘r; Hw
A(:Ea

- Hw(sec2 Qi —

EJ,, Hw d {(seci Hp—

dr
« tan® oy, sect aw)d—rl

xz)
B [dzy Hy d

Pldzt AcE. dx

1 (:—zsecﬁ aw){ =p R

in which the positive direction of the y axis has
been taken as downward. Further details con-
cerning the above derivations will be refered to
paper (18).

Hereupon, a basic equation different from Eq.
(18) will be derived for a suspension bridge with
two hinged stiffening girders. Adding again Eq.
(16) with respect to all nodal points until i, we

rasserneasdCLB)
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obtain
AVigi= —8iF8pp errererrrrenerereriinannin (19)

where Sp is the shearing force due to loading on
a simple beam. Maultiplying both sides by dz
and summing up from 1 to {, the bending mo-
ment is

,{M{: M‘Hi—ji:, dVajdx ........................ {20)

where Mg is the bending moment due to loading
on a simple beam. Change the positive direction
of the y axis downward and the notations with
those conventionally used in the deflection theory,
and let 4x—0 in the equation obtained from Egs.
(15) and (20), we get

® H,

o oy
~H Su (1_ Aoy

sec? aw)%dm

tan?® e, SEC arw>

S i 2/ wisiEoL)

dx

Finally a differential equation of equilibrium
for suspension bridges applying lateral loads will
be derived. Make two equilibriums about cable
point i among the right and left side cable forces,
hanger force dRp; and external load Pydw, and
about girder point 7 among the hanger force, the
right and left side shearing forces of the girder,
and the external force Pydx as shown in Fig. 7.
If we use the following relation:

B )
sesnssaes DR

wi =11y SEC awi

Li=d% SEC ttapi ++++resevrevivansanes

PcaA X

y N .
NN
\::]Rhi

Li—y

Ilig. 7 Deformation due to lateral forces

.
m—.}lﬁ}o o _kz(y_u) ................. (24)

we can easily derive the following Eqgs. (25) and
(26)

dty g .
Eeln dxt +'Ez'z'(”—“)=ps ------------------ (25)
d2u s
— Hy e kz(v-——u)_pc sressiaaissiessii(26)

which have been developed by L. S. Moisseiff and
F. Lienhard® and reformed by C. Z. Erzen®.

4. CONSIDERATION OF BASIC EQUA-
TIONS

Equations (14), (18) and (21) will be investigated
more deeply here. If the following approximation

is taken
sec? am=(1+tan2 crw}ﬁjzzl..................(27)
Eq. (14) becomes
IIP g ]
ABEG 5: i awdr’

d*y Hy \ (¢ . _
dz? (l" AcEc) 5 = el

This expression shows a good agreement with
Selberg's equation®. He derived it by the fol-
lowing procedure. In an underformed state, the
relation between the element of cable is

dst=dx*+dy* e (29)
in which ds denotes the length of the cable ele-

ment, and dz and dy are its components. In a
deflected state, the relation will be

(ds+def=(dz+dey+(dy+dy)E e (30)
in which de denotes the elongation of ds. From
Egs. (29) and (30) we find

_di_ﬁ_f_fe._ﬁ_@'_ff’?.._l(ﬂ :

dex  dx dx dx dv 2 d.:c)

1/de\* 1/7dEN?
- 2 ( d.r) -3 ( d'x) (31)

Neglecting the last two terms on the right hand
side and using ds/dx=sec ay, we can write

de d )
dE—'E sec awdx—gi"rzr dxr

1 ﬂ)s ......................... ’
_2(d..".: 4 s (32)

The elongation de of the cable element will be

1
5, (T~ Tuds

— ﬁ{Hw-l—Hp) sec ay sec adx
LEad i

Huy

T AgE,

de=

SEC? Q@ +++verereseeineeeans(33)
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and
sec ap={(1-+tan? ay)"/*
1/dy\?
_1+2( : )
dy+dy
tan a= =
dz+d§ Y eeenee (34)

8y dn\(y e
H(dx+dx)(1 d.r)
sec a=(1+tan? a)'/?

~ dy | dn
=ty (dw+ )

Substituting Eqs. (33) and (34) into (32) and in-
tegrating from ¢ to ¢/, and making sec ay=sec a,
we obtain

My Sc sec? aydx Fﬁ—y-(l—.-ﬂ“’ )

F

AcEc < b AcEa
et 1(/dp\?
3 Sc :;dx—z Sc (dm) dz=0 «uree- (35)

It is found that Eq. (35) agrees with Eq. (28)
except for the third term of the left hand side.
The error on the plus-minus sign found in his
original paper has already been corrected in Eq.
(35). It is noted that the third term in Eq. (35)
is a small quantity of the second order by this
derivation. S. Goto analyzed this problem but a
small error was found in his paper!¥.

In Eq. (18), neglecting the small quantities, we
can write

d*y . i*_?_)
I:gf,,d : de (sec ““’dx
d!
“H”dx"=p"""'m"""“""""""(36)

Concerning the equation of vertical equilibrium
for suspension bridges that takes the effect of
horizontal displacement of cable into considera-
tion, the following Eq. (37) derived by H. H.
Rode® is notable.

d*y dn
Exly e~ (Hut- Hy) -(sec2 aw )
d*y
_H”dxﬂ = ernrssresarnsanssrssannesser(37)
The derivation by Rode is as follows. Using

notations in the deflection theory and taking the
positive direction of the y axis as downward, the
vertical component of cable tension before load-
ing is

Vw—Hm-gy— R RS RR)

and the one after loading is

dy+d
V=t B g g

=t Hy) | G (155 ) 4G} (20)

If we use the following assumption, Eq. (40) can

be obtained.

Assumption 9: The elongation of cable de and
the small terms conecrning d%* and dy* in
Eq. (31) may be neglected.

From Egs. (39) and (40), we obtain

v_(Hw+Hp}[—+{1+( ) } gﬂ

dn).
= (Ht Hy) [ G- G o (41)

Then from Eq. (38), the equation of equilibrium
for cable before loading is

Hy—— a2y IS U ap ceeeereresisanaesiistisiani (42)
dx
where

7w: intensity of hanger tension per unit
length due to dead load

The equation after loading is, from Eq. (41),

(dy | d dn\)
(Hw+H, p)l At -I—H(secs ““’T)‘;) ]
=tWo—(FroF1g) roereereerenssnsssssirars(43)

where

rp: intensity of hanger tension increment
per unit length due to live load.

From Eqgs. (42) and (43), we find

'“J ( e év)
Hp (Hw+1!p)d sec’ aw -
diy
=rp=—p+ J.[a;.{,’H .................. (44)
Equation (44) agrees with Eq. (37). It is seen

that Eq. (36) agrees with Eq. (37) except for Hp
in the second term of Eq. (37).

If the following assumption is used in Eq. (36).
Assumption 10: Sec?ap=1+tan® ap=1
then Eq. (36) becomes

d*p

Ealv gt

Hw .._Hp d_r, =P ceeeeee(d45)

This is the equation which puts H,=0 in Melan's
epuation:

d*
—Hy —y"'P

Es In dat

d

and the former was termed the linearized equa-
tion by Bleich™. Neglecting the small quantities
in Eq. (21), we find
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z N d;?
M=My—Hpy—Hy | sec? aw " -dz (47)
0

and furthermore by using Assumption 10, Eq. (47)
reduces to

M=Ma—Hyy—Hyp -weoreeorerammsineinnans (48)

This equation has the form obtained by substitut-
ing Hp=0 in the following equation:

M:MB—'pr—'(Hw"!"Hp}I) ............... (49)

which is the basic eguation of the bending mo-
ment in the deflection theory.

As for the effect of hanger inclinations, several
investigations have been made. The method of
analysis for this effect corresponds fundamentally
to the consideration of the horizontal increment
of the cable tension due to hanger inclination,
that is

Hm=§

in which y denotes the horizontal displacement
of the stiffening girder. From Eq. (3), it is clear
that Hp has been caused by the lateral rigidity
of hangers.

It will be further investigated in detail the re-
lation between Eq. (18) which has been derived
by the tangent stiffness equation of cable, and
Rode’s linearized equation (36) or Melan's linear-
ized equation (45). Considering a cable link shown
in Fig. 8, the first order increment of joint force
(called here force increment) occurs in the cable
link due to loading. In Fig. 8, @ac=the force in-
crement due to axial rigidity, cé=the force incre-
ment due to lateral rigidity, and @é=the combin-
ed force increment. Representing the relation
between the combined force increment @é and
the corresponding displacement increment by the
global coordinates (x, y), we get Eq. (15). There-
fore, both axial and lateral rigidities are taken
into consideration in Eq. (18).

If an assumption is made as follows:
Assumption 11: The small terms regarding Hu/

s -n}'-‘(-f)-(f—x)dx N (11)]

i

| AX

Fig. 8 Member end forces of cable link

AoFEe can be neglected.
then Eq. (15) becomes

dVa=dHg tan oy — Hy sec? uw% ------ (51)
Transformation gives
: o Tw dp
= 0, S e
[dHa, dVal[sin s, —cos aw) ===
.............................. (52)

Since the vector [sin aw, —c0s ay] is a unit vector
towards the ad direction and 4z/cos ay, is the dis-
placement towards the perpendicular direction of
vector ab in Fig. 8, Eqg. (52) indicates that the
coefficient perpendicular to the cable axis of the
combined force increment is a force due to the
lateral rigidity of the cable. Assumption 11 is
the same as neglecting vector @¢ and assuming
that the combined force is represented by vector
ad.

Rode’s linearized Eq. (36) has been obtained
with Assumption 11, and this assumption is also
used as Eq. (40) by Rode. Namely, changing Eq.
(40) gives

[dE, dpl[dx, dy]T=0 - reermrrimrrniiniiaiinan (53)

and this equation means that the combined force
increment intersects perpendicularly with the
cable axis so that it accords with Assumption 11.

Next, the meaning of Assumption 10 will be
investigated. Melan's equation was originally ob-
tained by neglecting the horizontal cable displace-
ment d¢ in Eq. (39), thus Rode called his equation
the one in which horizontal cable displacement
was not neglected. Melan's linearized equation
can also be gotten with Assumption 10, when Eq.
(51) becomes

4y

dVa=dHg tan aw— Huy Ty e (54)
which is changed to be
[ng, dVa] [Siﬂ Hay, — COS ﬂw]r
_To g B
=] costaw o - N 1)

Comparing Eq. (55) with Eq. (52), we find that
Melan’s linearized equation uses the lateral rigid-
ity of the cable as Twcos® aw/l in place of the
true ridigity Tw/L. The equation in Assumption
10 shows a better approximation when the tan-
gent angle of the cable is smaller.

Since Melan’s Eq. (46) is included in Rode’s
Eq. (37), Rode's equation will be regarded as the
basic equation for the deflection theory and con-
sidered whether the effect of the cable configu-
ration changes, namely whether the cable deflec-
tion after loading in the deflection theory is taken
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into consideration or not. Changing Eq. (37) into
the relation of the force increments of a cable
link, we can write

[dHa, dVa][sin ouw, —COS aw]T

Tw+Ty dy
A L i S o LR T 56
L COS aw (56)
where
Ty: the first order increment of the cable

link tension.

This eguation means that the relation between
the force increment and the displacement incre-
ment of cable is linear and the lateral ridigity is
(Tw+Tp)L, if Ty is already known. These re-
lations are shown in Fig. 9. The point S is the

S
§ T
R P.

[TRe] T
Z8 [ TwTo
ggl P |
83

0 Ro P

displacement
Fig. 9 Relation of equilibrium equations

equilibrium point due to dead load and the rela-
tion between the true force increment and the
displacement increment is expressed as a curved
line ST which is nonlinear. Equation (52) which
is equivalent to Eq. (36) is expressed by the tan-
gent line SP at the point S and the equilibrium
point for external forces is P. Equation (56)
which is equivalent to Eq. (37) is expressed by
the straight line SR which passes through point
S and is parallel to the tangent line at the true
point @ (if it is known). It is clear that the true
point @ is placed between point P and point R,
and we don’t know which point is closer to the
true point . Therefore we can not conclude
that Eq. (37) is more accurate than the linearized
equation (36) through those equations. A similar
discrepancy holds for Melan’s equation (46) and
its linearized version Eq. (45).

Since Melan’s equation (46) has approximations
for the lateral rigidity of cable and the errors are
different according to cable inclination angles, it
is not easy to estimate the true property, but
generally speaking slightly larger displacements

Y. HAavAsHI

may result in Melan’s equation than in Rode’s
equation because of the lower approximation for
the lateral rigidity of cable.

It should be noted that the consideration in this
section is in the region of such static quantities
as the cable displacement and bending moment
of the stiffening girder which are mainly related
to the static property of cable, and does not in-
clude the explanation of such a static quantity
closely related to the inclination of hangers as
horizontal displacements of the stiffening girder.

By means of the above consideration, it may
be concluded that the vertical equilibrium equa-
tion in the deflection theory is an essentially lin-
ear equation and the equilibrium is taken from
the cable configuration under dead load by using
the lateral rigidity (Tw+ Tp)/L or (Tw+ Tp) cos® aw/
L. In order to take account of the effect of cable
configuration changes, the finite deformation the-
ory should be used with iteration methods!®)»16),

5. CONSIDERATIONS BY NUMERICAL
CALCULATIONS

In this section numerical analysis is made for
a two hinged suspension bridge which has 300-
1,000-300 m span, 6 truck lanes and four railways
(only two railways are loaded simultaneously)
shown in Fig. 10. Stiffening trusses shown in
Fig. 11 are regarded as a beam with bending and
axial rigidity. Member properties and dead loads

ton ¥ unit: m

3 -036437 # ..\ PN # =042197 g{
| T /'l\ .
03157
L=
g o)
e o
o o ¥
L o)
¢
| i
. ' <ol
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Fig. 10 Two hinged suspension bridge
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\:\"f
00 E
2 ]
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Fig. 11 Stiffening truss
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Table 1 Properties of members (per one side)

Member Terms Value
Area 0.75398 m?2
Cable
Modulus of elasticity | 2.10x107 1/m?2
Area (per one hanger) | 0.01621 m?2
Hanger —- —

Modulus of elasticity | 1.4x107 t/m?

Area 0.2108 m?

Stiffening truss
(regarded as a
beam}

Moment of inerlia 8.9063 m4

2.1%107 t/m?

Modulus of elasticity

are shown in Tables 1 and 2, respectively. The
following typical cases are considered: I maxi-
mum of the cable tension, II maximum of the
bending moment at the center span, III maxi-
mum of the deflection at the center span, IV
maximum of the tower top displacement,and the
loading conditions are shown in Fig. 12. Temp-
erature changes are neglected for simplicity.
The characteristics of each analytical method
are shown in Table 3. In Method 7, the hanger

Table 2 Dead loads (per one side)
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1 muximum of cable tension
IV muximum of tower top displacement T g
_'_'_236 2 . 288 12 286

L 309 370 309

|

t e e l J

= —— s - A

\ i o : 28

The load st this span is not spplied in the case IV.

II muximum of bending moment T=0"
286 12 300 688 1z =288
[ L' S ! A‘
& A AIE -y
| | i
L1586 |
I muximum ot deflection T=0°
286 12 aBg ) 12 286
538 V. aas
.93.] 370 8l
! k) o7 i I
I I :
286 |

Truck Loaodings
tss.529' —— 1819Vm

Fig. 12 Loading conditions

Train Loading
. 2014 by

area is enlarged 200 times greater than in the

other cases. The horizontal cable tension under
Member C:;:‘tﬁ" Side span | Direction dead load is 30,320t according to program A!®)
Cable and 30,433 t according to program B'". This small
6.3102t/m | 6.29956/m | ivaction difference is due to the programing technique be-
Gl Ot tween programs A and B, and is not essential.
2 L6164 ¢ ittt p :
6.4471t/m | 6.6164t/m | girection The calculation results are shown in Table 4, and
Stiffening truss 16.0t/m 16.0t/m g?;::zl?:;;al the following 15:’ found.
1) If one considers the values from Method 1 to
Table 3 Distinction of calculation methods
Character- Deform. Hanger Hanger : .
{stics change elong. inel Cable tension Program
Method 1 o " Q 9] Iteration A
v 2 % ¥ o) o) Tw A
» 3 3 X o fe) Tat Ty A
# 4 % (@] (0] Tw cos? ay A
» 5 5 % O ) (Tu+Tp)cos?ay 8 A
# g 6 * (0] ® (Tw+ Tp') cos? ay 9 B
»” 7 O x (9] Iteration A

*1 Finite deformation theory

#*2 Linearized finite deform. theory (similar to Rode's linearized equation)

*3 Similar to Rode’s non-linearized equation
*{ Similar to Melan's linearized equation

*5 Similar to Melan's non-linearized equation
*6 Deflection theory: Melan’s equation

*7  Finite deformation theory (An is 200 times enlarged)

*8 Tp: cable tension increment in Method 2

M Tp':

cable tension increment which satisfies the cable equation

*10 The effect of the term has been taken into account,
*11 The effect of the term has not been taken into account.
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Table 4 Calculated results (two hinged susp. bridge)

Case Disp. etc. Method 1 Method 2 Method 3 | Method 4 Method 5 Method 6 Method 7
i 5w ‘1 3,645 *2 3,679 3,641 3,692 3,655 3,650 3,647
2 100.0 *3 100.9 99.9 101.3 100.3 100.1 100.1
i M ) 15,532 15,068 15,414 16,773 16,208 16,432 15,421
E 100.0 102.8 99.2 108.0 104.4 105.8 99.3
- 3 i —2.02 —2.15 —2.03 —2.22 —2.10 —2.12 —2.01
e 100.0 106.4 100.5 109.9 104.0 105.0 99.5
— . o~ 15.8 16.6 15.9 17.1 16.4 16.5 15.7
$omEE NCH 100.0 105.1 100.6 108.2 103.8 105.7 99.4

*1 At the middle of the center span
*2 Calculated value
*3 % when value of Method 1 is regarded as 100%

be exact, Method 1 gives values between Methods
2 and 3 as was expected.

2) However, the values from Method 3 are very
much closed to those from Method 1.

3) Since the lateral rigidity of cable is estimated
at a little lower than the true value in Methods 4
and 5, the displacements are a little larger than
the other cases as was expected.

4) The effect of hanger elongations is so small
that the values among Methods 1-6 scarcely
change without consideration of its effect.

5) The values from Method 6 which expectantly
resemble those from Method 5 are a little differ-
ent than those from Method 5. This is because
the effect of hanger inclinations is taken into ac-
count by the lateral rigidity of hangers in Method
5 but is not taken into account in Method 6, or
the boundary conditions of cable near the position
of the tower are different from each other in
Method 5 and Method 6 in regard to the vertical
cable behavior.

6) The values of both the bending moment of
the beam and the displacements from Method 5
are 4% larger than those from the exact solution.
The reason is that the cable tensions are esti-

mated lower to the degree of cos® ey times than
the true ones.
7) Method 2 has a similar accuracy to Method 6.

Concerning a suspension bridge with a continu-
ous stiffening truss, numerical calculations have
been performed for a model which has cable spans
of 270-1,100-270 m and almost the same dead and
live loads as in the above-mentioned two hinged
suspension bridge. The horizontal cable tension
under dead load is about 36,000t per one side of
the bridge. The details of the bridge constants,
load intensities, and conditions have been omitted
here, and the reader should refer to paper'®.

Table 5 shows comparisons among Method 1
(the finite deformation theory), Method 2 (the
linearized finite deformation theory) and Method
6 (the deflection theory) for the load cases: 1
maximum of the cable tension, II maximum of
the bending moment of the stiffening truss at the
position of the tower, III maximum of the hori-
zontal displacement of the tower top, IV maxi-
mum of the horizontal displacement at the end
of the stiffening truss.

From the table it is found that the following
relation holds among the values of the static

Table 5 Calculated results (susp. bridge with continuous stiff. truss)

Case Disp. etc. Method 1 ' Method 2 *Zl Method 3 3
1 Horizontal cable tension 6,019t 6,048 6,111
increment 1004 100 102
1 Bending moment of stiff. —62,368tm —63,331 =95,108
truss at tower position 1002 102 104
11 Horizontal disp. of tower 25.7em 26.3 8.2
top 100% 102 110
v Horizontal disp. of end of 67.9cm 66.2 64.5
stiff, truss 100% 97 95

*] Finite deformation theory
*2 Linearized finite deformation theory
*3 Deflection theory
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quantities.
Method 1< Method 2<Method 6

except for the values of the load case IV. The
hanger tensions and the hanger inclinations de-
pend on each load case and the position of the
stiffening truss, and the definite tendencies are
not found.

Through the numerical calculations for the sus-
pension bridge with a two hinged or a continuous
stiffening truss, the foregoing description 7):
Method 2 has a similar accuracy to Method 7,
has been confirmed.

6. CONCLUSIONS

1) A bar member subjected to a tension 7" has
both a longitudinal rigidity Af/L, and a lateral
ridigity 7/L. The former is related to the small
displacement theory and the latter is to the re-
storing force of a strained chord or a simple
pendulum.

2) If we assume that the effects of hanger elon-
gations and inclinations are neglected in a suspen-
sion bridge and we take an equilibrium about a
cable configuration before loading, the cable equa-
tion in which the cable tension is taken into
consideration can be obtained by using the stiff-
ness equation composed of the above-mentioned
two ridigities, which is shown in Eq. (14).

3) In an analogous way, an equation of vertical
equilibrium for the suspension bridge is obtained,
which is shown in Eq. (18).

4) After neglecting the small quantities Hy/AcE,
in Egs. (14) and (18), both the usual cable equa-
tion on the basis of the small displacement theory
and Rode’s linearized equation (36) are obtained,
and the latter becomes Melan's linearized equa-
tion (45) when we use Assumption 10.

5) In a similar manner, an expression of the
bending moment of the stiffening girder in a two
hinged suspension bridge is obtained,which is
shown in Eq. (21).

6) Taking an equilibrium in an out-plane direc-
tion under dead load for the suspension bridge,
transversal equations (25) and (26) are obtained,
which have been originally derived by L. S.
Moisseiff and F. Lienhard and reformed by C. Z.
Erzen.

7) The effect of hanger inclinations can be eva-
luated by taking the lateral rigidity of hangers
into account.

8) Rode’s non-linearized equation (37) is obtained
by neglecting hanger elongations, hanger inclina-
tions, and the terms regarding Huy/AcE: using
the lateral rigidity of the stiffness equation con-

sisting of a cable tension T+ 7 alone, and also
taking the equilibrium toward the perpendicular
direciton to the cable axis under dead load.

9) In an analougous way, Melan’'s non-linearized
equation is obtained by using the lateral rigidity
corresponding to a cable tension (7Tw+ Tp) cos® auw.
10) In the deflection theory the values of the
bending moment of the stiffening girder are 4 to
62 larger than the exact one. In the errors
about 2% may be due to the neglection of the
effect of hanger inclinations and the remainder
may be due to the lower estimation of the cable
tension as much as cos® oy times, or the differ-
ence of the boundary condition beside it in a two
hinged suspension bridge.

11) The linearized finite deformation theory us-
ing the lateral rigidities of cable tension under
dead load holds almost the same accuracy as
Melan's non-linearized equation.

12) As to the deflection theory, it should rather
be said that it is not the theory in which the
effect of cable deflection is taken into account,
but it is the theory in which the effect of lateral
rigidity of cable is taken into consideration on
the basis of the small displacement theory in the
sense that the equilibrium has been taken about
the structural configuration under dead load.
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APPENDIX NOTATION

(@, y)=Cartesian coordinates (Fig. 5) and x, ¥
also denote the ordinates of cable before
loading

Tw, T=Cable tensions before and after loading,
respectively

I, H=Horizontal components of cable tension
before and after loading, respectively

Vis, V=Vertical components of cable tension be-
fore and after loading, respectively

R, R=Hanger tensions before and after load-
ing, respectively

dx, dy=Horizontal and vertical displacements
due to loading, respectively
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dH, dV=Horizontal and vertical components of
the first order increment of cable tension
due to loading, respectivély
dR=The first order increment of hanger ten-
sion due to loading
We=Cable weight at joint
Ly, L=Unstrained and strained lengths of cable
between adjacent hangers respectively
Ay=Cross sectional area of cable
aw, a=Slopes of cable before and after loading,
respectively
Ar=Hanger interval, namely dr=xip1—&;
S=Shearing force in stiffening girder due
to loading
Sgp=Shearing force due to loading on a simple
beam
M=Bending moment in stiffening girder due
to loading
Mp=Bending moment due to loading on a
simple beam
p=Live load per unit bridge length
£=Horizontal displacement of cable, name-
ly, é=dx
y=Vertical displacement of cable, namely,
p=dy
Hp=Horizontal component of the first order
increment of cable tension due to load-
ing, namely, Hy=dH
Iy, L=Moments of inertia at the area of stiffen-
ing girder in vertical and lateral bend-
ing, respectively
y=Horizontal displacement of stiffening
girder
Es=Modulus of elasticity of stiffening girder
dRp=Restoring force of hanger for lateral
loading
#, v=Lateral displacements of cable and stiffen-
ing girder, respectively
We, ws=Weights of cable and stiffening girder
per unit bridge length, respectively
Pe, ps=Lateral, external forces for cable and
stiffening girder per unit bridge length,
respectively
h, hz=Hanger lengths
i=Subscript denoting member or
number
a, b=Subscripts distinguishing member ends
A=Difference sign

joint
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