5-10 Appendixes

Appendix-1: Derivation of Eq. (34)

Eq. (33) is given by :

f C (ε) / X (φ) = P (ε) / (X (ε) - X (φ))

(1-1)

where, from Eq. (29),

f C (ε) =η (ε) I, II + C I, II (ε) + G (ε)

(1-2)

Eq. (1-1) is changed to be:

f C (ε) = P (ε) / (X (ε) / X (φ) - 1)
(1-3)
X (ε) / X (φ) = 1+ P (ε) / fC (ε)
= ( f C (ε) + P (ε) ) / f C (ε)

(1-4)

X (φ) / X (ε) = f C (ε) / ( f C (ε) + P (ε) )

(1-5)

Eq. (17) is given by:

P (ε) =QM (ε) +AXI (ε) +AXII (ε) - C I, II (ε) - η (ε) I, II - G (ε)
(1-6)

From Eq. (1-2) and Eq. (1-6), we have

f C (ε) + P (ε) = QM (ε) +AXI (ε) +AXII (ε)
(1-7)

Eq. (31) is given by:

QM (ε) = X (ε) - DX (ε) - AXI (ε) - AXII (ε)

(1-8)

From Eq. (1-7) and Eq. (1-8), we obtain

f C (ε) + P (ε)
= X (ε) - DX (ε): denominator of Eq. (1-5)
(1-9)

Appendix-2: Derivation of break-even sales equation corresponding to Solomons’s problem when the 1st and the 2nd kinds of manufacturing overhead applied exist

The two equations, which give the break-even point, are the line-1 given by Eq. (2-1) and the line-2 given by Eq. (2-2) in Fig. 3.

QM / f (ε) + X / (f (ε) / tan αXI (ε))=1
(2-1)
QM = - AXII (ε) + tan β (ε) ·X
(2-2)

where

tan αXI (ε) = (AXI (ε) - GV (ε)) / X (ε)
(2-3)
tan β (ε) = ( AXII (ε) + QM (ε)) / X (ε)
(2-4)

f (ε) =f C (ε) - AXII (ε)

(2-6)

f C (ε) =η (ε) I, II + C I, IIF (ε) + GF (ε)

(2-7)

Eq. (2-3) has been obtained referring to Eq. (9) in reference (3). In Eq. (2-3) and in Eq. (2-7), the superscripts V and F represent variable cost and fixed cost, respectively. Consequently we have the following equation:

G (ε) = GF (ε) + GV (ε)

(2-8)

Eq. (2-1) is changed to be

QM (ε) + tan αXI (ε) X (ε)= f (ε)

(2-9)

At the break-even sales X (φ), Eq. (2-9) and Eq. (2-2) become:

QM (φ) + tan αXI (ε) X (φ)= f (ε)
(2-10)
QM (φ) = - AXII (ε) + tan β (ε) X (φ)

(2-11)

Substituting Eq. (2-11) into Eq. (2-10) gives

− AXII (ε) + tan β (ε) X (φ) + tan αXI (ε) X (φ) = f (ε)

(2-12)

Eq. (2-12) is changed to be

( tan αXI (ε) + tan β (ε) )X (φ) = f (ε) + AXII (ε)

X (φ) =( f (ε) + AXII (ε) ) / (tan αXI (ε) + tan β (ε) )
(2-13)

In Eq. (2-13) , the numerator and the denominator are:

f (ε) + AXII (ε) = f C (ε)

= η I, II (ε) + C I, II (ε) + GF (ε)

(2-14)
tan αXI (φ) + tan β (ε)

= (AXI (ε) - GV (ε)) / X (ε) + ( AXII (ε) + QM (ε)) / X (ε)

= (AXI,II (ε) - GV (ε) + QM (ε) ) / X (ε)
(2-15)

From Eq. (31), we have

QM (ε) = X (ε) - DX (ε) - AXI (ε) - AXII (ε)

(2-16)

Substituting Eq. (2-16) into Eq. (2-15) gives

tan αXI (ε) + tan β (ε)
=(X (ε) - DX (ε) - GV (ε) ) / X (ε)
(2-17)

Therefore, we have

X (φ) / X (ε) = (η I, II (ε) + C I, II (ε) + GF (ε) ) / (X (ε) - DX (ε) - GV (ε) )

(2-18)

When C I, II (ε)= C I, IIF (ε) + C I, IIV (ε), by similarity between ∆AHF and ∆DHC, fixed cost terms always go to numerator and variable cost terms always go to denominator in Eq. (2-18).


Appendix-3: Relationship between 45°- break-even chart and managed gross profit chart

When GV (ε) =0 and αXI (ε) is denoted as α, the relationship between the 45°- break-even chart and the managed gross profit chart is shown in Fig. 3-1.

Fig. 3-1 Relationship between 45°- break-even chart and managed gross profit chart

When GV (ε)=0, from Eq. (2-3) and Eq. (2-4) and Eq. (2-17), we have

tan αXI (ε) = AXI (ε) / X (ε)

(3-1)
tan β (ε) = ( AXII (ε) + QM (ε)) / X (ε)
(3-2)
tan αXI (ε) + tan β (ε)=(X (ε) − DX (ε) ) / X (ε)
(3-3)

From Fig. Appendix-1, we obtain

P(ε) = (X (ε) - X(φ)) ( tan αXI (ε) + tan β (ε))
(3-4)
P(ε) = (X (ε) - X(φ)) (X (ε) - DX (ε) ) / X (ε)
(3-5)
P(ε) / X (ε) = (1 - X(φ) / X (ε)) ·(1- DX (ε) / X (ε) )
(3-6)
tanγ(ε) = DX (ε) / X (ε): Variable ratio
(3-7)
tan αXI (ε) + tan β (ε) + tanγ(ε) = 1
(3-8)
P(ε) = (X (ε) - X(φ)) · (1 - tan γ(ε) )
(3-9)

Appendix-4: 45°- gross profit chart

From Eq.(19) in the section of "Outline of managed gross profit chart theory" , we have

P (ε) = QM (ε) - Q M ξ (ε)
(4-1)
QM ξ (ε) = G F (ε) + δ (ε)
= G F (ε) +C (ε) - AX (ε) + η (ε)
(4-2)

Eq. (4-1) is transformed to be:

QM (ε) = P (ε) / (1 - Q M ξ (ε)/ QM (ε))
(4-3)

Eq. (4-3) means Fig. 4-1.

Fig. 4-1 45°- gross profit chart